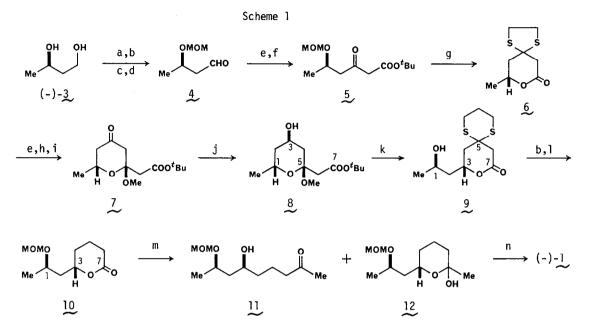

Tetrahedron Letters, Vol.26, No.1, pp 73 - 74, 1985 Printed in Great Britain

STEREOSELECTIVE SYNTHESIS OF (1R,3R,55)-1,3-DIMETHYL-2,9-DIOXABICYCLO[3.3.1]NONANE

Tadashi Nakata,<sup>\*</sup> Shigeto Nagao, Sachiko Takao, Tadasu Tanaka, and Takeshi Oishi<sup>\*</sup> RIKEN (The Institute of Physical and Chemical Research) Wako-shi, Saitama 351-01, Japan

Summary:  $(1\underline{R},3\underline{R},5\underline{S})-1,3$ -Dimethyl-2,9-dioxabicyclo[3.3.1]nonane (1) has been stereoselectively synthesized based on a highly stereoselective method for the synthesis of 1,3-syn-polyol.


Endo-1,3-dimethyl-2,9-dioxabicyclo[3.3.1]nonane (1) is a host-specific substance isolated from Norway spruce infested by the ambrosia beetle (Trypodendron lineatum Oliv.).<sup>1</sup> Several groups have already synthesized the racemic and optically active  $1.^{2,3}$  The bicyclic compound 1 corresponds to the ketone having 1,3-syn-diol moiety (see 2). We have recently developed a highly stereoselective method for the synthesis of 1,3-syn-polyol based on the stereoselective reduction of a six-membered  $\beta$ -keto acetal and successive transthioacetalization.<sup>4</sup> We now report the stereoselective synthesis of  $(1\underline{R},3\underline{R},5\underline{S})$ -1 using this new method.



Lactone 9 used in the synthesis of 1,3-<u>all-syn</u>-tetraol<sup>4</sup> was chosen as a key intermediate. In the present synthesis, however, the optically active 9 should be synthesized. Thus, commercially available (<u>R</u>)-(-)-1,3-butanediol (3; 80% e.e.) was used as a starting material and was converted to the optically active 9 by the route shown in scheme 1. In the previous report, <sup>4</sup> the details up to the intermediate 6 were not shown. Therefore, in the present paper, synthesis of the optically active 6 from 3 was described. (<u>R</u>)-(-)-3 was converted to aldehyde  $4^5$  in 4 steps (1. <u>t</u>-BuMe<sub>2</sub>SiCl, 2. MeOCH<sub>2</sub>Cl, 3. <u>n</u>-Bu<sub>4</sub>NF, 4. PCC; 68% overall yield), which was treated with LDA and MeCOO-<u>t</u>Bu and then with Jones reagent giving β-keto ester 5,  $[\alpha]_D^{24}$  -13.9° (<u>c</u>=2.22, CHCl<sub>3</sub>), in 75% yield. Treatment of 5 with 1,2-ethanedithiol and BF<sub>3</sub>·Et<sub>2</sub>O in CH<sub>2</sub>Cl<sub>2</sub> afforded  $\delta$ -lactone 6, mp 92.5-93°C;  $[\alpha]_D^{24}$  +30.4° (<u>c</u>=1.72, CHCl<sub>3</sub>; after recrystallization), in 95% yield. Crude 6 was converted to  $\delta$ -lactone 9,  $[\alpha]_D^{25}$  +2.8° (<u>c</u>=2.28, CHCl<sub>3</sub>), in the same way as described in the previous paper.<sup>4</sup> The optical purity of 9 was found to be 80% e.e., <sup>6</sup> which shows that no racemization took place during a series of reactions.<sup>7</sup>

After protection of the C-1 hydroxyl group as MOM ether (88% yield), reductive dethioacetalization of 9 with Raney Ni in dioxane afforded lactone 10,  $[\alpha]_D^{27}$  -33.5° (c=1.8, CHCl<sub>3</sub>); IR (neat): 1730 cm<sup>-1</sup>; NMR:  $\delta$  1.24 (d, J=6.1 Hz; Me), 3.36 (s; OMe), 4.46 (m; C-3 $\beta$  H),<sup>8</sup>

in 73% yield. Reaction of 10 with MeLi in THF-Et $_20$  produced a mixture of 11 and 12 in a ratio of 5.5:1 (77% yield), which, on treatment with acid, was converted to bicyclic acetal (-)-1,  $[\alpha]_D^{25}$  -35.6° (<u>c</u>=0.71, pentane), <sup>7</sup> lit.<sup>2c</sup>  $[\alpha]_D^{22}$  -37.3°; NMR:  $\delta$  1.20 (d, <u>J</u>=6.4 Hz; C-3 Me), 1.27 (s; C-1 Me), 3.94 (dqd, <u>J</u>=12.5, 6.4, 3.9 Hz; C-3 H), 4.27 (m; C-5 H),<sup>8</sup> in 43% yield.



<u>a)</u> <u>t</u>-BuMe<sub>2</sub>SiCl/imidazole/DMF, <u>b</u>) MeOCH<sub>2</sub>Cl/<u>i</u>-Pr<sub>2</sub>NEt/CH<sub>2</sub>Cl<sub>2</sub>, <u>c</u>) <u>n</u>-Bu<sub>4</sub>NF·3H<sub>2</sub>O/THF, <u>d</u>) PCC/3A molecular sieves/CH<sub>2</sub>Cl<sub>2</sub>, <u>e</u>) LDA/MeCOO-<u>t</u>-Bu/THF/-78°C, <u>f</u>) Jones reagent/acetone/0°C,

g) HSCH<sub>2</sub>CH<sub>2</sub>SH/BF<sub>3</sub>·Et<sub>2</sub>O/CH<sub>2</sub>Cl<sub>2</sub>/rt, <u>h</u>) CH(OMe)<sub>3</sub>/CSA/MeOH/CH<sub>2</sub>Cl<sub>2</sub>, <u>i</u>) NBS/AgNO<sub>3</sub>/Na<sub>2</sub>CO<sub>3</sub>/aq MeCN, j) K-Selectride/THF/-78°C, <u>k</u>) HS(CH<sub>2</sub>)<sub>3</sub>SH/BF<sub>3</sub>·Et<sub>2</sub>0/CH<sub>2</sub>Cl<sub>2</sub>/-40°C, <u>1</u>) Raney Ni/dioxane/reflux, m) MeLi/THF/ether/-78°C, n) 15% HC1/MeOH/reflux; p-TsOH/CH<sub>2</sub>Cl<sub>2</sub>

Acknowledgement: This work was supported in part by a Grant-in-Aid (No 57218096) for Scientific Research from the Ministry of Education, Science, and Culture.

## References and Notes

- 1. V. Heemann and W. Francke, <u>Naturwissenschaften, 63</u>, 344 (1976); <u>Planta Med</u>., <u>3</u>2, 342 (1977) [<u>Chem. Abstr., 88</u>, 101563h (1978)].
- 2. For the synthesis of racemic form: a) H. Gerlach and P. Künzler, <u>Helv. Chim. Acta, 60</u>, 638 (1977); b) B. Kongkathip and N. Kongkathip, Tetrahedron Lett., 25, 2175 (1984). For the Synthesis of optically active form: c) H. Redlich, B. Schneider, and W. Francke, <u>Tetrahedron</u> Lett., 21, 3013 (1980); H. Redlich, B. Schneider, R. W. Hoffmann, and K.-J. Geueke, <u>Liebigs</u> Ann. Chem., 393 (1983); d) T. Sato, T. Itoh, C. Hattori, and T. Fujisawa, <u>Chemistry Lett</u>., <u>Ann. Chem</u>., 1391 (1983).
- 3. The absolute configuration of natural 1 remains unknown since its  $\left[lpha
  ight]_{\mathsf{n}}$  value has not been measured yet.
- 4. T. Nakata, S. Takao, M. Fukui, T. Tanaka, and T. Oishi, <u>Tetrahedron Lett.</u>, <u>24</u>, 3873 (1983).
  5. <u>Cf</u>. A. I. Meyers and R. A. Amos, <u>J. Am. Chem. Soc.</u>, <u>102</u>, 870 (1980).
  6. The optical purity of <u>9</u> was determined from <sup>1</sup>H NMR spectra<sup>8</sup> of the corresponding MTPA ester.
  7. If the optically pure <u>3</u> was employed, the optically pure <u>9</u> and thence <u>1</u> should be obtained.
  8. <sup>1</sup>H NMR spectra were taken on a JEOL GX-400 instrument in CDCl<sub>3</sub>.

(Received in Japan 18 September 1984)